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Finite Element Analysis
Waveguides

of Optical

N. MABAYA, P. E. LAGASSE, AND P. VANDENBULCKE

,4bsts-act— A firrite element program for the analysis of anisotropic tegrated optic waveguides, this paper will only deal with
optical waveguides is described. Tfre appearance of spurious numerical four
modes, due to the fact that the functional is nonpositive definite is

dkcussed and a possible solution to the problem is presented. For isotropic 1)
wavegnides it is shown that both EH- and HE-type modes can be very

accurately approximated by two different scalar finite element programs.

Finally, a method for calculating the attenuation of leaky modes in a single
2)

material integrated optic wavegnide using this scalar finite element method

is proposed. 3)

I. INTRODUCTION

I N THE field of optical communications monomode or

quasi-monomode guides have become important due to

the growing interest in single mode fiber and integrated

optical waveguide structures. The analysis of such wave- 4)

guides is not an easy problem since in general the geometry

can be quite complicated and the materials anisotropic.

The finite element method is probably the waveguide anal-

ysis method that is the most generally applicable and most

versatile. Once a finite element program has been written

any geometry and material combination that can be suita-

bly represented by a division in triangles can be analyzed. ln

specific questio~s related to-the use of thi~ method:

the extension of the method to the case of anisotropic

waveguides;

a discussion of the problems encountered when com-

puting higher order modes;

the use of scalar functional for computing the HE

and EH modes of optical guides in the weakly guid-

ing approximation. The accuracy of this method is

discussed and the very important computational ad-

vantages of this approach are illustrated by a number

of examples;

the extension of the finite element method to the

analysis of the leaky modes of a single material

optical waveguide by means of a boundary perturba-

tion method.

II. ANISOTROPIC WAVEGUIDES

integrated optical devices that contain electrooptic or

Ten years ago the finite element method was first used

for the computation of the eigenmodes of dielectric loaded,

conducting wall waveguides. More recently Yeh et al. [2],

[3] have extended the use of the finite element method to

the analysis of optical waveguides. Since [2] and [3] contain

a very thorough description of the application of the finite

element method to the analysis of optical fibers and in-
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elastooptic interactions, optical waveguides are made on

crystal substrates, such as LiNbOq. This means that a

complete eigenmode analysis method has to be able to

handle anisotropic guides. In Fig. 1 we consider the most

general case: and anisotropic guiding region of arbitrary

cross section and index variation and an anisotropic sub-

strate region. If the crystal has a diagonal permittivity

tensor one can rewrite Maxwell equations in terms of the

longitudinal components E= and Hz in the following way:

0018-9480/8 1/0600-0600$00.75 @1981 IEEE
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Fig. 1. General anisotropic optical waveguide,
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where

k, wavenumber in vacuum;

~ wavenumber of the guided mode,

The finite element formulation is based on following varia-

tional expression for the previous equations:
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The natural boundary conditions for this function are

where

This means that the natural boundary conditions of func-

tional (1) are the continuity of the tangential components

along the discontinuities of the transversal electric and

magnetic field. If the waveguide is isotropic, (1) is reduced

to the well-known functional discussed, for example, in

[1]-[3]. Starting from (1) a general finite element program

for the analysis of anisotropic optical waveguides has been

written [4]. When using such a program one is faced with a

number of problems and trade offs.

1) The choice of the type of elements and the number of

elements needed to model the waveguide. The most simple

triangular element assumes a linear interpolation between

the field values at the corner points of the triangle. Using

this type of element one obtains large but sparse matrix

equations. By careful numbering of the nodal points, band

matrices can be obtained. Instead of the linear elements,

one can also use triangular elements with higher order

polynomial interpolation functions. The drawback is that

the programming effort for those higher order elements is

quite large. The advantage is that one can obtain accurate

results with much smaller matrix dimensions. We have

found for example that in the case of a rectangular overlay

guide, where a small number of triangles is sufficient to

model the geometry, one obtains about the same accuracy

with 900 linear elements or 928 nodal points as with only 9

fourth-order elements or 87 nodal points. Since the geome-

try or index variation of some guides can be so com-

plicated, as to require a large number of triangles, the finite

element program allows one to specify the desired element

order between 1 and 4.

2) The modeling of the infinite transverse extent of the

waveguide always represents a problem. Three possible

solutions are: a) imposing an artificial zero boundary con-

dition for E= and HZ at a large enough distance from the

guide; b) use sector elements [3] that assume some ex-

ponential decay for the field; or c) implementing the

radiation condition through an integral equation at the

boundary of the finite element region. The last method,

although exact, leads to such a complicated set of equa-

tions, that it is numerically impractical to use. The sector

elements would be ideal if one could find the exponential

decay factor, as a result of the variational process. Since

this leads to nonlinear equations one has to determine the

best exponential decay by trial and error for each point on

the dispersion characteristic. The first method has as ad-

vantage its simplicity. It has been used for the calculation

of the results presented in this paper but care has been

taken to make sure that the influence of the position of this

zero boundary condition on the obtained results, was

negligible.

3) The most serious difficulty in using the finite element

analysis, for open dielectric waveguides, is the appearance

of spurious, nonphysical modes. This means that a number

of the eigenvalues and eigenvectors of the matrix eigen-

value problem, do not represent physical modes of the

waveguide, but are spurious results introduced by the

numerical technique. The reason for the appearance of the

spurious modes is probably the fact that the functional (1)

is not positive definite since AX or Ay can be positive or

negative, depending whether the element is in the guide or

in the substrate [1], [5], [6]. If one is interested only in the

calculation of the lowest propagating mode, the ap-

pearance of those spurious modes is not much of a prob-

lem. The lowest order mode usually corresponds to the first

positive eigenvalue of the matrix equation. This can easily

be checked by plotting the calculated field values. In case

of a nonphysical mode the fields vary in a random fashion

over the guide cross section. If one wants to compute a set

of higher order modes, it becomes more difficult and very

cumbersome to distinguish between the spurious and the

physical modes of the guide.

However, we have found that by explicitly enforcing the
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Fig. 2, Dispersion characteristic of a rectangular overlay gmde-
occurence of spurious modes,

continuity of the tangential components of the transversal

fields, at the interfaces, by means of Lagrange multipliers,

most of the spurious modes disappear. Since this boundary

condition is in principle already enforced by the natural

boundary conditions of the functional (l), we have no firm

mathematical proof for this method. The effectiveness of

the technique is illustrated by an example shown in Fig. 2.

The circles represent all the solutions of the classic finite

element program, while the results of the finite element

program with continuity conditions are indicated by

crosses. One can clearly see that all the results of this last

program, lie on the dispersion characteristic of the modes

of the guide. The ability to calculate a set of modes of an

anisotropic waveguide is illustrated in Fig. 3 by a plot of

the dispersion characteristic of the E~l and Ejl modes of a

guide made on a Y-cut LiNbO~ substrate. Fig. 4 shows the

contour lines for E, and HZ for those two modes. The

disadvantage of this method lies in the greatly increased

complexity of the program and of the numerical operations

that have to be done for enforcing those continuity condi-

tions. For very complicated guide geometries for example

the accumulation of rounding errors becomes a problem. If

the guide is isotropic or if it can be approximated by an

equivalent isotropic guide, we propose in the next para-

graph an approximate finite element formulation that al-

lows a much easier and faster calculation of the different

modes of the guide.

III. APPROXIMATE SCALAR FINITE ELEMENT

FORMULATIONS

If the optical guide is isotropic, we propose two different

scalar formulations, that yield excellent approximations for

the EH and HE type of mode of an integrated optical

waveguide. As an example we consider a rectangular over-

lay waveguide with height a and width 2a. The refractive

index of the guide and of the substrate is, respectively, 1.5

and 1.45. Using the vectorial finite element program de-

scribed in previous paragraph and a division consisting of

9 fourth-order triangular elements, we find following points

of the dispersion characteristic of the lowest mode:

HE mode: kOa=ll.4512

Da= 16.9478

Iv%
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Fig. 3. Dispersion characteristic for the E/, and EJ, mode of a LiNb03
waveguidc,
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Fig. 4. Contour fines for E= and Hz for the E:, and E;, mode of the
LiNb03 waveguide shown in Fig. 3.

EHmode: /cOa=ll.7012

~a=17.3178.

The scalar approximation for the HE modes is based on

the folIowing functional:

This functional has the continuity of El@/~n as natural

boundary condition. A finite element program based on

functional (2) yields j3 as the eigenvalue of the matrix

equation for a given kO. In the case of an infinite slab

guide equation (2) gives an exact variational expression for

the TE slab modes. If we consider again the rectangular

overlay guide one finds following points of the dispersion
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characteristic:

kOa=ll.4512

~a=16.9481.

This is almost identical to the result obtained for the H.E

mode with the full vectorial analysis.

The scalar approximation for the EH modes is based on

the following functional:

This functional has the continuity of ((1 /n2)(~@/i3n)) as

natural boundary condition. A finite element program

based on this functional yields kO as eigenvalue of the

matrix equation for a given /3. In the case of an infinite

slab guide, (3) gives an exact variational expression for the

TM slab modes. Considering again the previous rectangu-

lar overlay guide one finds following points on the disper-

sion characteristic:

/coa= 11.7086

@a= 17.3178.

This is almost identical to the result obtained for the EH

modes with the full vectorial analysis.

From those examples one can see that the two scalar

finite element formulations form an excellent approxima-

tion for the HE- and EH-type modes of the optical wave-

guide, even in the case where the width to height ratio of

the guide is small. The main advantages of this scalar

approximation are as follows.

1) The dimensions of the matrices are reduced by a

factor of 2 which means a reduction of the computer time

by approximately a factor of 4.

2) The two scalar functional are positive definite (or

can immediately be made positive definite). All the eigen-

values are, therefore, positive and each one corresponds to

a physical mode of the guide. This means that one can now

easily compute the higher order modes of the guide.

To illustrate the use of those scalar finite element ap-

proximation a number of modes of two different wave-

guides have been calculated. First we consider again the

rectangular overlay guide described earlier. In Fig. 5 con-

tour plots for the scalar field @ are shown for the 5 lowest

order HE modes of the guide. The normalized wavenumber

kOa for all modes is equal to 25. For a lower value of kOa

such as 12.5 only two modes are propagated. As can be

seen in Fig. 6 the field extends further into the substrate

when the mode is close to cutoff. It is easier to calculate

modes close to cutoff with this scalar finite element method

since it is possible to use more triangles to model the

substrate for a given maximum matrix size.
As a second example we consider the trapezoidal overlay

guide [7], [8] shown in Fig. 7. Such a guide is obtained

when the guide material is not completely etched away, so

that a thin layer remains over the complete surface of the

waveguide. One can see how the four lowest order modes

Fig. 5. Contour lines for the scalar field @ of the five lowest order
modes of a rectangular overlay guide as calculated by the scalar finite
element program ( koa = 25).

—x

Fig. 6. Contour lines for the scafar field @ of the two lowest order
modes of the rectangular overlay guide for k. a = 12.5. Second mode is
close to cutoff.
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Fig. 7, Contour lines for the scalar field I+ of the four lowest order
modes of trapezoidal guide.
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Fig. 8, Cross section of single materiaf “waisted-nb” opticaf waveguide.

of such a guide are easily computed using only 12 fourth-

order elements.

IV. LEAKY MODES IN SINGLE MATERIAL GUIDES

Recently a single material “waisted rib” optical wave-

guide defined by means of preferential etching of a GaAs

substrate has been described [9]. A typical cross section of

such a guide is sketched in Fig. 8. Since the guide has the

same refractive index as the substrate a pure guided mode

cannot exist, so that the light coupled in such a waveguide

will leak into the substrate. If the attenuation of such a

leaky mode is low enough, the guide can still be used in

integrated optic structures. In order to design a guide with

sufficiently low leakage one needs a method for computing

the attenuation of the leaky modes. The finite element

method with an artificial zero field boundary condition

obviously cannot be used for the direct calculation of leaky

modes. For the case of low leakage we propose a perturba-

tion method based on the scalar finite element method.

We consider the single material topographic optical

waveguide shown in Fig. 8. If we assume the field to be

zero on the boundaries c and c’ we can compute the

eigenmodes of this guide by means of the scalar finite

element method. A guided mode @, of this waveguide

obeys the wave equation

V2+, +k%l =0 (4)

with as boundary condition: @, = O on c and c’. If the

propagation constant of this mode is kl we have

@l(x, Y,z)=@l(x, y)”e-J~’z. (5)

Due to the presence of the substrate, the “mode” +2 of the

real guide is leaky

$2(X> Y, Z)=@2(X, y). e-Jk2’e-az (6)

with

V242 +k2@2 =0 (7)

where @2satisfies the radiation condition at infinity in the

substrate. In order to apply the boundary perturbation

method we derive first an impedance relation

for @2 on the boundary c. Using Greens function for

two-dimensional halfspace, one finds

@2(xo)= –& J_:~Jl)[Ylx–xo115 ”dx (8)

and Hfl ) is the zeroth-order Hankel

kind.

Equations (4) and (7) yield after

guide cross section S

function of the first

integration over the

After the application of Greens theorem, the substitution

of (5), (6) and taking the boundary conditions into account,

one finds

Using (8) and approximating Q2 by @,, one finally obtains

This formula allows one to calculate the attenuation coeffi-

cient a, once the mode @, of the truncated guide has been

computed by means of the finite element method.

In Fig. 9 the contour lines for the fundamental mode of

the guide with a zero boundary condition on c are plotted

for k.= 1 pm– 1 and k.= 3 pm– 1. Application of formula

(9) yields an attenuation of about 100 dB/mm for k.= 1

pm–’ and 14 dB/mm for kO = 3.5 pm–’. Although still

high, this last value indicates that better geometries and

modes probably can be found, so that acceptable values for

the attenuation are obtained. Even if this perturbation
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Fig. 9. Contour lines for the scalar field o of the fundamental mode of
GaAs “waisted-ritr” waveguide for (a) ,kO= 1 pm– 1 and (b) /c. = 3
pm– 1.

method is not highly accurate, we hope to use it to find out

which guide cross sections have any chance of providing

relatively low loss light guidance.

V. CONCLUSIONS

In this paper several finite element programs for the

computation of the guided modes of optical waveguides

have been discussed. First a very general program for the

analysis of anisotropic guides was presented. The

advantages and limitations of this program have been

described. A possible solution to the problem of the spuri-

605

ous numerical modes, encountered when calculating higher

order modes, has been proposed. In the case of isotropic

waveguides, it was shown that two scalar finite element

formulations can provide very accurate solutions to the

eigenmode problem. This approach has as main advantages:

the smaller matrix dimensions, less computer time, no

spurious modes and the capability of easily computing

higher order modes. Finally a boundary perturbation

method has been outlined that allows one to calculate the

attenuation coefficient of leaky modes in single material

guides, starting from a finite element calculation.
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