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Finite Element Analysis of Optical
Waveguides

N. MABAYA, P. E. LAGASSE, anDp P. VANDENBULCKE

Abstract— A finite element program for the analysis of anisotropic
optical waveguides is described. The appearance of spurious numerical
modes, due to the fact that the functional is nonpositive definite is
discussed and a possible solution to the problem is presented. For isotropic
waveguides it is shown that both EH- and HE-type modes can be very
accurately approximated by two different scalar finite element programs.
Finally, a method for calculating the attenuation of leaky modes in a single
material integrated optic waveguide using this scalar finite element method
is proposed.

I. INTRODUCTION

N THE field of optical communications monomode or
quasi-monomode guides have become important due to
the growing interest in single mode fiber and integrated
optical waveguide structures. The analysis of such wave-
guides is not an easy problem since in general the geometry
can be quite complicated and the materials anisotropic.
The finite element method is probably the waveguide anal-
ysis method that is the most generally applicable and most
versatile. Once a finite element program has been written
any geometry and material combination that can be suita-
bly represented by a division in triangles can be analyzed.
Ten years ago the finite element method was first used
for the computation of the eigenmodes of dielectric loaded,
conducting wall waveguides. More recently Yeh er al. [2],
[3] have extended the use of the finite element method to
the analysis of optical waveguides. Since [2] and [3] contain
a very thorough description of the application of the finite
element method to the analysis of optical fibers and in-
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tegrated optic waveguides, this paper will only deal with
four specific questions related to the use of this method:

1) the extension of the method to the case of anisotropic
waveguides;

2) a discussion of the problems encountered when com-
puting higher order modes;

3) the use of scalar functionals for computing the HE
and EH modes of optical guides in the weakly guid-
ing approximation. The accuracy of this method is
discussed and the very important computational ad-
vantages of this approach are illustrated by a number
of examples;

4) the extension of the finite element method to the
analysis of the leaky modes of a single material
optical waveguide by means of a boundary perturba-
tion method.

II. ANISOTROPIC WAVEGUIDES

In integrated optical devices that contain electrooptic or
elastooptic interactions, optical waveguides are made on
crystal substrates, such as LiNbO,. This means that a
complete eigenmode analysis method has to be able to
handle anisotropic guides. In Fig. 1 we consider the most
general case: and anisotropic guiding region of arbitrary
cross section and index variation and an anisotropic sub-
strate region. If the crystal has a diagonal permittivity
tensor one can rewrite Maxwell equations in terms of the
longitudinal components E, and H, in the following way:

] JE, 9 JE,
_[5‘;(/1)66)( ox )‘f‘ 8y(Ay€y(W)]

Bl el

OH, )]
A, —=||=¢,E,
dy
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Fig. 1. General anisotropic optical waveguide.

B O B 8 o | R
where
Ax:—el—’ 4,= el
K p? K2
k, wavenumber in vacuum;

B wavenumber of the guided mode.

The finite element formulation is based on following varia-
tional expression for the previous equations:

6L=0
0E, \?
— ({1l _, p2_ 2 z
L= [ —¢,E? —p H; +exAx( 7 )
+e, A E: A(E)2+ A LA
8y y ay Ko "\ Bx BoAy, ay
B[, B M, 0L on,
+w A"ax dy Yoy ox as.
The natural boundary conditions for this function are

7G; =0 and G, =0

(1)

where
— oL  _ oL _ T
T AT e
8( ox ) 8( ay )
_ AL _ L j =
Gy = Y2 u,+ T uy—;(u:XE,,).
(%) %)

This means that the natural boundary conditions of func-
tional (1) are the continuity of the tangential components
along the discontinuities of the transversal electric and
magnetic field. If the waveguide is isotropic, (1) is reduced
to the well-known functional discussed, for example, in
[1]-[3]. Starting from (1) a general finite element program
for the analysis of anisotropic optical waveguides has been
written [4]. When using such a program one is faced with a
number of problems and trade offs.

1) The choice of the type of elements and the number of
elements needed to model the waveguide. The most simple
triangular element assumes a linear interpolation between
the field values at the corner points of the triangle. Using
this type of element one obtains large but sparse matrix
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equations. By careful numbering of the nodal points, band
matrices can be obtained. Instead of the linear elements,
one can also use triangular elements with higher order
polynomial interpolation functions. The drawback is that
the programming effort for those higher order elements is
quite large. The advantage is that one can obtain accurate
results with much smaller matrix dimensions. We have
found for example that in the case of a rectangular overlay
guide, where a small number of triangles is sufficient to
model the geometry, one obtains about the same accuracy
with 900 linear elements or 928 nodal points as with only 9
fourth-order elements or 87 nodal points. Since the geome-
try or index variation of some guides can be so com-
plicated, as to require a large number of triangles, the finite
element program allows one to specify the desired element
order between 1 and 4.

2) The modeling of the infinite transverse extent of the
waveguide always represents a problem. Three possible
solutions are: a) imposing an artificial zero boundary con-
dition for E, and H, at a large enough distance from the
guide; b) use sector elements [3] that assume some ex-
ponential decay for the field; or ¢) implementing the
radiation condition through an integral equation at the
boundary of the finite element region. The last method,
although exact, leads to such a complicated set of equa-
tions, that it is numerically impractical to use. The sector
elements would be ideal if one could find the exponential
decay factor, as a result of the variational process. Since
this leads to nonlinear equations one has to determine the
best exponential decay by trial and error for each point on
the dispersion characteristic. The first method has as ad-
vantage its simplicity. It has been used for the calculation
of the results presented in this paper but care has been
taken to make sure that the influence of the position of this
zero boundary condition on the obtained results, was
negligible.

3) The most serious difficulty in using the finite element
analysis, for open dielectric waveguides, is the appearance
of spurious, nonphysical modes. This means that a number
of the eigenvalues and eigenvectors of the matrix eigen-
value problem, do not represent physical modes of the
waveguide, but are spurious results introduced by the
numerical technique. The reason for the appearance of the
spurious modes is probably the fact that the functional (1)
is not positive definite since A, or 4, can be positive or
negative, depending whether the element is in the guide or
in the substrate [1], [5], [6]. If one is interested only in the
calculation of the lowest propagating mode, the ap-
pearance of those spurious modes is not much of a prob-
lem. The lowest order mode usually corresponds to the first
positive eigenvalue of the matrix equation. This can easily
be checked by plotting the calculated field values. In case
of a nonphysical mode the fields vary in a random fashion
over the guide cross section. If one wants to compute a set
of higher order modes, it becomes more difficult and very
cumbersome to distinguish between the spurious and the
physical modes of the guide.

However, we have found that by explicitly enforcing the
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Fig. 2. Dispersion characteristic of a rectangular overlay guide—
occurence of spurious modes.

continuity of the tangential components of the transversal
fields, at the interfaces, by means of Lagrange multipliers,
most of the spurious modes disappear. Since this boundary
condition is in principle already enforced by the natural
boundary conditions of the functional (1), we have no firm
mathematical proof for this method. The effectiveness of
the technique is illustrated by an example shown in Fig. 2.
The circles represent all the solutions of the classic finite
element program, while the results of the finite element
program with continuity conditions are indicated by
crosses. One can clearly see that all the results of this last
program, lie on the dispersion characteristic of the modes
of the guide. The ability to calculate a set of modes of an
anisotropic waveguide is illustrated in Fig. 3 by a plot of
the dispersion characteristic of the E and E}; modes of a
guide made on a Y-cut LiNbO; substrate. Fig. 4 shows the
contour lines for £, and H, for those two modes. The
disadvantage of this method lies in the greatly increased
complexity of the program and of the numerical operations
that have to be done for enforcing those continuity condi-
tions. For very complicated guide geometries for example
the accumulation of rounding errors becomes a problem. If
the guide is isotropic or if it can be approximated by an
equivalent isotropic guide, we propose in the next para-
graph an approximate finite element formulation that al-
lows a much easier and faster calculation of the different
modes of the guide.

III. APPROXIMATE SCALAR FINITE ELEMENT
FORMULATIONS

If the optical guide is isotropic, we propose two different
scalar formulations, that yield excellent approximations for
the EH and HE type of mode of an integrated optical
waveguide. As an example we consider a rectangular over-
lay waveguide with height a and width 2a. The refractive
index of the guide and of the substrate is, respectively, 1.5
and 1.45. Using the vectorial finite element program de-
scribed in previous paragraph and a division consisting of
9 fourth-order triangular elements, we find following points
of the dispersion characteristic of the lowest mode:

HEmode: koa=11.4512
Ba=16.9478

B/ko
23129
nys220
4 ny = 229
ny =229 ak
22900 : . , ; 4
0 10 20 30
Fig. 3. Dispersion characteristic for the Ejj and E3; mode of a LiNbO,
waveguide.
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Fig. 4. Contour lines for E, and H, for the E| and E; mode of the
LiNbO; waveguide shown in Fig, 3.

EHmode: koa=11.7012

Ba=17.3178.

The scalar approximation for the HE modes is based on
the following functional;

2 2

L:ff[(g—ﬁ) +(—g—$) —k2n¢? + B
This functional has the continuity of d¢/dn as natural
boundary condition. A finite element program based on
functional (2) yields 8 as the eigenvalue of the matrix
equation for a given k,. In the case of an infinite slab
guide equation (2) gives an exact variational expression for
the TE slab modes. If we consider again the rectangular
overlay guide one finds following points of the dispersion

as. (2)
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characteristic:
koa=11.4512
Ba=16.9481.

This is almost identical to the result obtained for the HE
mode with the full vectorial analysis.

The scalar approximation for the EH modes is based on
the following functional:

R

This functional has the continuity of ((1/n%)(3¢/9n)) as
natural boundary condition. A finite element program
based on this functional yields k, as eigenvalue of the
matrix equation for a given B8. In the case of an infinite
slab guide, (3) gives an exact variational expression for the
TM slab modes. Considering again the previous rectangu-
lar overlay guide one finds following points on the disper-
sion characteristic:

L(ke)+Ee koqs]ds ()

koa=11.7086
Ba=17.3178.

This is almost identical to the result obtained for the EH
modes with the full vectorial analysis.

From those examples one can see that the two scalar
finite element formulations form an excellent approxima-
tion for the HE- and EFH-type modes of the optical wave-
guide, even in the case where the width to height ratio of
the guide is small. The main advantages of this scalar
approximation are as follows.

1) The dimensions of the matrices are reduced by a
factor of 2 which means a reduction of the computer time
by approximately a factor of 4.

2) The two scalar functionals are positive definite (or
can immediately be made positive definite). All the eigen-
values are, therefore, positive and each one corresponds to
a physical mode of the guide. This means that one can now
easily compute the higher order modes of the guide.

To illustrate the use of those scalar finite element ap-
proximation a number of modes of two different wave-
guides have been calculated. First we consider again the
rectangular overlay guide described earlier. In Fig. 5 con-
tour plots for the scalar field ¢ are shown for the 5 lowest
order HE modes of the guide. The normalized wavenumber
koa for all modes is equal to 25. For a lower value of k,a
such as 12.5 only two modes are propagated. As can be
seen in Fig. 6 the field extends further into the substrate
when the mode is close to cutoff. It is easier to calculate
modes close to cutoff with this scalar finite element method
since it is possible to use more triangles to model the
substrate for a given maximum matrix size.

As a second example we consider the trapezoidal overlay
guide [7], [8] shown in Fig. 7. Such a guide is obtained
when the guide material is not completely etched away, so
that a thin layer remains over the complete surface of the
waveguide. One can see how the four lowest order modes
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Fig. 5. Contour lines for the scalar field ¢ of the five lowest order
modes of a rectangular overlay guide as calculated by the scalar finite
element program (kya=25).

Fig. 6. Contour lines for the scalar field ¢ of the two lowest order
modes of the rectangular overlay guide for kya=12.5. Second mode is
close to cutoff.
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Fig. 7. Contour lines for the scalar field ¢ of the four lowest order
modes of trapezoidal guide.

Fig. 8. Cross section of single material “waisted-rib” optical waveguide.

of such a guide are easily computed using only 12 fourth-
order elements.

IV. LEAKY MODES IN SINGLE MATERIAL GUIDES

T

Recently a single material “waisted rib” optical wave-
guide defined by means of preferential etching of a GaAs
substrate has been described [9]. A typical cross section of
such a guide is sketched in Fig. 8. Since the guide has the
same refractive index as the substrate a pure guided mode
cannot exist, so that the light coupled in such a waveguide
will leak into the substrate. If the attenuation of such a
leaky mode is low enough, the guide can still be used in
integrated optic structures. In order to design a guide with
sufficiently low leakage one needs a method for computing
the attenuation of the leaky modes. The finite element
method with an artificial zero field boundary condition
obviously cannot be used for the direct calculation of leaky
modes. For the case of low leakage we propose a perturba-
tion method based on the scalar finite element method.

We consider the single material topographic optical
waveguide shown in Fig. 8. If we assume the field to be
zero on the boundaries ¢ and ¢’ we can compute the
eigenmodes of this guide by means of the scalar finite
element method. A guided mode ¢, of this waveguide
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obeys the wave equation

V2, +k%,=0

(4)

with as boundary condition: ¢, =0 on ¢ and ¢’. If the
propagation constant of this mode is k&, we have

$1(%, y,2)=@(x, y)-e /1%, (5)

Due to the presence of the substrate, the “mode’™ ¢, of the
real guide is leaky

$a(x, y,2)=Py(x, y)-e VFrre (6)

with
v %, + k¢, =0 (7)

where ¢, satisfies the radiation condition at infinity in the

substrate. In order to apply the boundary perturbation
method we derive first an impedance relation

90,

@, =F 52|

for ®, on the boundary c¢. Using Greens function for
two-dimensional halfspace, one finds

1 [+d 0P
= — Q) — —72,
D,(x,) 3 f—d HP [y x—x,]] 7 dx

(®)
where

y=Vk?—k3
and H{" is the zeroth-order Hankel function of the first
kind.

Equations (4) and (7) yield after integration over the
guide cross section S

ff[qb;vqul _¢1V2¢;] as=o0.

After the application of Greens theorem, the substitution
of (5), (6) and taking the boundary conditions into account,
one finds

ad .
f@;a—y‘.dc:ffstbld)z*[klz-l—(]kz——a)z] ds.
Using (8) and approximating ®, by ®,, one finally obtains

+d| r+d 09, 09,
O e i

4k, [ [|®,|>ds

This formula allows one to calculate the attenuation coeffi-
cient &, once the mode @, of the truncated guide has been
computed by means of the finite element method.

In Fig. 9 the contour lines for the fundamental mode of
the guide with a zero boundary condition on ¢ are plotied
for ko =1 pm™"' and k, =3 pm™'. Application of formula
(9) yields an attenuation of about 100 dB/mm for k,=1
pm~ ! and 14 dB/mm for k,=3.5 pm~'. Although still
high, this last value indicates that better geometries and
modes probably can be found, so that acceptable values for
the attenuation are obtained. Even if this perturbation

- (9
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Fig. 9. Contour lines for the scalar field ¢ of the fundamental mode of
GaAsl “waisted-rib” waveguide for (a) ko=1 pm™! and (b) k,=3
pm-

method is not highly accurate, we hope to use it to find out
which guide cross sections have any chance of providing
relatively low loss light guidance.

V. CONCLUSIONS

In this paper several finite element programs for the
computation of the guided modes of optical waveguides
have been discussed. First a very general program for the
analysis of anisotropic guides was presented. The
advantages and limitations of this program have been
described. A possible solution to the problem of the spuri-
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ous numerical modes, encountered when calculating higher
order modes, has been proposed. In the case of isotropic
waveguides, it was shown that two scalar finite element
formulations can provide very accurate solutions to the
eigenmode problem. This approach has as main advantages:
the smaller matrix dimensions, less computer time, no
spurious modes and the capability of easily computing
higher order modes. Finally a boundary perturbation
method has been outlined that allows one to calculate the
attenuation coefficient of leaky modes in single material
guides, starting from a finite element calculation.
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